An Approach to Query Cost Modelling in Numeric Databases

Jarvelin, Kalervo

Journal of the American Society for Information Science (1986-1998); Jul 1989; 40, 4; ProQuest

pg. 236

An Approach to Query Cost Modelling in Numeric

Databases

Kalervo Jéarvelin

Department of Library and Information Science, University of Tampere, P.O. Box 607 SF-33101

Tampere, Finland

Numeric online databases (NDBs) have become essen-
tial in information retrieval (IR). NDBs differ from tradi-
tional bibliographic databases (BDBs) with respect to
their content, structural complexity, data manipulation
capabilities, and the complexity of the user interfaces
and user charging schemes. Recent trends in user
charging policy for all online IR have been based on
charging either for information actually retrieved from
the database or for the costs of processing user queries
rather than for the connect-time. However, the viability
of such charging schemes depends totally on the user’s
possibilities of estimating the charges in advance, dur-
ing the query negotiation phase. Due to the complexity
of the modern database management systems (DBMS),
users cannot estimate such charges in advance without
cost estimation tools. in this article, user charges based
on query processing costs in NDBs are considered and
the problem of estimaiing such charges in advance is
analyzed. A systematic and general approach with
many desirable properties is proposed to query cost es-
timation. The approach is based on the well-known rela-
tional data model (RDM) and the query optimization,
cardinality estimation and file design techniques devel-
oped in this context. Tools based on the approach are
necessary components of query interfaces to NDBs if a
mode of charging not based on connect-time is used.

1. Introduction

Numeric databases (NDBs) are rapidly gaining in popu-
larity in information retrieval (IR) and their use is growing
faster than that of bibliographic databases (BDBs) [1-7].
NDBs differ in many respects from BDBs [8,9]. Firstly,
NDBs contain data instead of references. Secondly, their
structure is more complex than that of BDBs. Queries in
NDBs often require combining data from several files the
organizations of which vary, whereas the standard in
BDBs is the inverted file. Thirdly, while manipulation of
data is essential in NDBs, plain retrieval characterizes
BDBs. Fourthly, the user interfaces to NDBs, especially
the data manipulation languages, are more complex and
powerful than those in BDBs. Fifthly, the charging

Received October 9, 1985; accepted May 26, 1987.

© 1989 by John Wiley & Sons, Inc.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE 40 (4) 236-245, 1989

schemes in NDBs are also more complex including connect-
time, computer processing, storage use, graphics use, off-
line printing, administrative overheads, subscription, and
telecommunication fares [5].

Recent studies on charging for online IR propose charg-
ing the users rather for the information they retrieve or for
its retrieval cost than for connect-time [10~14]. In this ar-
ticle these charging principles are referred to as item-based
charging (i.e., charges are based on the number and type
of the retrieved information items) and processing-based
charging (i.e. charges are based on the cost of retrieving
and processing these items).

The purpose of this article is to present an approach to
advance estimation of processing-based user charges,
brielfly termed query cost modelling. The costs of queries
depend on their characteristics, the actual database con-
tents and the file structures employed in the database and
may vary over a broad range [9]. Query characteristics and
database contents determine the volume of data retrieved,
i.e., the cardinalities of result and intermediate files which
depend on data distributions in the database [15-20]. File
structures determine the possible access strategies for
queries [21-25]. Together with the hardware they also de-
termine access cost. The nonexpert database user cannot
be assumed to know the actual distributions of data in a
database nor the file structures, nor how such information
is used for cardinality estimation or access strategy se-
lection. Therefore automatic cost estimation tools are
called for.

In order to be useful and convenient such tools for user
charge estimation must meet a number of requirements:

* The tools should cover the estimation of user charges
whether based on items retrieved, processing or e.g.
data communication.

* The tools must also provide readable and rich enough
descriptions of query results so that users may form a
clear idea of the results and modify the query if neces-
sary.

» To cope with often complex and unanticipated queries
in NDBs the tools must be general. They must allow
estimation of the user charges for any well-formed
auerv.

CCC 0002-8231/89/040236-10$04.00

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



* Because users formulate their queries, and decide on
their execution, on the basis of the charge estimates,
the estimates must be reasonably accurate.

* The tools must make charge estimation convenient for
the database user; they must not assume extra knowl-
edge, technical skills nor effort on behalf of the user.

* The tools must be fast enough to support interactive
query formulation.

* The tools must be compatible with the query systems of
DBMSs so that they can be made available where they
are needed.

¢ The costs of using tools must be insignificant with re-
spect to query charges.

* The tools must be explicitly and precisely defined in
terms of how estimates are computed and whar infor-
mation is used.

A methodology for building user charge estimation
tools that meet these requirements has been proposed in
[8]. It consists of solutions to three subproblems of user
charge estimation, namely cardinality estimation [15],
item-based charge estimation [26] and processing-based
charge estimation [27-29]. The methodology has been de-
veloped in the context of the relational data model (RDM)
{30]. In the RDM, queries are expressed in relational alge-
bra (RA) or query languages based on it (e.g., SQL
[31,32] and the data are represented as relations (flat files)
consisting of tuples (records).

The query processing cost can be defined and measured
in many ways. A common measure is the CPU time used
by the query. It is a relevant measure when the CPU is the
critical resource in processing, i.e. when the queries are
CPU-bound [33]. Query applications are typically transfer-
bound (or 1/0-bound [33]), i.e. due to the relatively
simple processing, data transfer is the critical resource
[16,23-25,34]. In this article, data transfer cost is used as
the measure as only query applications are considered. It
will be measured by data rransfer time, i.e., the time (in
milliseconds) required by the transfer of data blocks
between the central and auxiliary memories [21,22,33].
The cost of maintaining the database is irrelevant from
the query cost modelling point of view and is therefore
not considered.

Query cost estimation in databases has been analyzed in
the literature on file and database design (either for the
RDM or in general, e.g., in {21,22,33,35,36]) and RA
query optimization [16,23-25,32,34,37]. Informing data-
base users about query costs has so far not been considered
because this literature focuses on business database appli-
cations [9]. Therefore the first two of the requirements
above (coverage, richness) are not satisfied by file design
and query optimization techniques. The file design tech-
niques provide accurate means of single-file search cost es-
timation but are not suitable as such for multi-file query
cost modelling. The requirements on user convenience,
speed and cheapness of use are often met by the query op-
timization techniques but generally not by file design tech-
niques. It is therefore necessary to synthesize the techniques
of file design and query optimization.

In summary, the approach to query cost modelling is
based on the following assumptions:

*  query processing is transfer-bound;

* the database maintenance cost per query is zero;

* the database files are flat (i.e., nonhierarchical) files
and stored on disks;

+ the records in the files are uniformly distributed over
the values of their attributes and the attribute values are
independent and uniformly distributed over their ranges
(these are standard assumptions in the literature, e.g.,
[16,20,23,38])

* the queries have no correlation (this is also a standard
assumption, e.g., [39], and more reasonable in NDBs
than in business databases);

* the file system of the DBMS reserves two buffer slots
(size one block) for each file and its overflow area (if
any) and each of its indices (one permanently for the
index root and the other for the rest of the index), as in
[22]; this assumption has an effect on the estimated
costs but is not a limitation of the approach.

2. The Components of the Query Cost Model

File Descriptions

Three issues must be considered in the development of
query cost estimation methods: the kind of information on
database use which is necessary for user charge estimation,
its representation, and its use. The types of information can
be categorized into information on user queries, databases
and the hw/sw environment [9]. In this article, the de-
scription of the database contents and structure will consist
of file descriptions. The components of file descriptions
are file names (FN), file cardinalities (CARD), descrip-
tions of the attributes of the file (AD), descriptions of the
functional dependencies among the attributes (FD), and
descriptions of the file organization (OD). Moreover, be-
cause RA queries are often multi-phased, the estimated
processing costs (COST) of subqueries are represented in
the file descriptions. An appropriate means of representing
the file descriptions is the n-ruple representation, which
has become popular for solving problems which require
precise, explicit and many-sided specifications (e.g. [40-
42]). The file descriptions are structured as six-tuples.
Consider, as an example, the sample file PRODUCTS
which is partially depicted in Figure 1.

PRODUCTS ( PRODUCT-NO,  TRADEMARK, TYPE, MANUFNO, QSALES
1512 GILLETTE 19500 260011 502000
1586 GILLETTE 19190 260011 107000
376203 BRAUN 19190 7005 408000
95051  BLUE STRATOS 19500 530286 200000
556556 TABAC 19500 1050 900000
FIG. 1. The sample file PRODUCTS

Reproduced with permission of the copyright owner:  Further reproduction prohibited without permission.

)



The formal file description for the PRODUCTS file is:

P = (PRODUCTS, 250000, {(PRODUCT-NO, 7,
250000, int, 1000, 9999999), (TRADEMARK, 20,
200000, char, A, A), (TYPE, 5, 17000, int, 100,
50000), (MANUF-NO, 6, 12000, int, 1000,
999999), (QSALES, 7, 20000, int, 0, 9999999)},
{{PRODUCT-NO} —> {PRODUCT-NO,
TRADEMARK, TYPE, MANUF-NO, QSALES},
{TRADEMARK} —> {MANUF-NO}, .. .},
(indexed-file, (45, \, {(TRADEMARK, 7813, 3,
200000), (TYPE, 2715, 2, 17000), (PRODUCT-
NO, 4483, 3, 250000)})), 0)

The six main components of this file description are:

* FN, the file name, e.g., PRODUCTS,

+ CARD, the file cardinality, e.g., 250000,

* AD, the artribute description set between the first pair
of bold-face braces,

o FD, the functional dependency set between the second
pair of bold-face braces,

* OD, the organization description between the follow-
ing bold-face parentheses,

+ COST, the processing cost parameter, which here has
the value 0.

The attribute description set describes the attributes of a
file. It is a set of attribute descriptions, each of which is a
six-tuple with the components:

o the attribute name, e.g., PRODUCT-NO,

o the length of the field used to store the attribute values
(in bytes), e.g., 7,

» the attribute selectivity (i.e., the number of different
values), e.g., 250000,

¢ the domain, e.g., int (for integers),

+ the lower bound value, e.g., 1000, and

* the upper bound value, e.g., 9999999.

The attribute description for the attribute PRODUCT-
NO, for example, is (PRODUCT-NO, 7,250000, int,
1000, 9999999). That is, product numbers are represented
by seven digits, there are 250000 different product num-
bers, all integers, and between the values 1000 and 9999
999. In the attribute descriptions, the symbol A denotes un-
necessary components, char character strings and int in-
tegers as domains. The components lower and upper
bound are unnecessary for character string attributes.

The functional dependency set (FD-set) represents the
functional dependencies {30] as A — B, where A and B
are sets of attribute names. The attributes named in
A functionally determine the attributes named in B.
For example, {PRODUCT-NO} — {PRODUCT-NO,
TRADEMARK, TYPE, MANUE-NO, QSALES} repre-
sents the functional dependency of the product data on the
PRODUCT-NO values. The FD set is a set of such FD
representations. Three dots ‘. . .” in an FD set are used to
indicate that the FD set is not given in toto: further FDs that
can be derived on the basis of those given (see e.g., [30]).

The organization description OD consists of two main
components, the first one giving the file organization type
(e.g., indexed-file) and the second containing the para-
meters necessary for describing files of that particular
type. In the case of an indexed file, these components are
the record length (e.g., 45, sum of attribute field lengths),
the sort key (an attribute name, e.g., A for no sort order), the
index description set giving details of the indices to the
file. Each index description contains the name of the in-
dexed attribute (e.g., TYPE), the number of leaf blocks in
the index (e.g., 2715), the height of the index (e.g., 2),
and the number of accession lists in the index (e.g.,
17000). These are key parameters governing the behavior
of tree-structured, exhaustive, multi-level and single-
attribute indices which are typical in modern DBMSs
[21,22,34-36]. In the sample file description P, the index
description set {(TRADEMARK, 7813, 3,200000),
(TYPE, 2715, 2,17000), (PRODUCT-NO, 4483, 3,
250000)} indicates that there are three indices on the
attributes TRADEMARK, TYPE and PRODUCT-NO.

Computer System Description

The parameters describing relevant features of the
hw/sw environment for query cost modelling can be clas-
sified into block-, buffer and sort- and disk unit-related
parameters [22,24,25,28,33-35]:

s Block-related parameters:
-B, the data block length (in bytes)
-B’, the index block length (in bytes)
-lIf, the index leaf block load factor
-nif, the index node block load factor
-p!l, the record or block identifier length (in bytes)

* Buffer-and sort-related parameters:
-z, the number of queues used in the sort subroutines
-f, the number of central memory block slots for data
buffering

* Disk unit-related parameters:
-5, the average seek time of the disk unit (in millisec-
onds)
-r, the theoretical data transfer rate (in bytes per mil-
lisecond)
-nr, the net data transfer rate for bulk transfer (in
bytes per millisecond)
-1, the track length of the disk unit (in bytes)
-t, the number of tracks per cylinder in the disk unit
-¢, the number of cylinders per disk unit
-d, the average rotational delay (in milliseconds)

These parameters are given by the storage parameters
(sp) which also form an n-tuplz, in this case a fourteen-
tuple (B, B’ 1If, nif, pl, z,f,s,r,nr, 1, t, c,d). The values
of these parameters must always be measured from the ac-
tual hw/sw environment of the DBMS. The following
sample storage parameters are assumed in the examples:
sp' = (2048, 1024, 0.75, 0.75, 8, 2, 4, 30, 512, 256,
20000, 20, 400, 8). Block access times, for example, can
now be computed on the basis of these parameters. The
data block access time in random block accesses is
s + d + B/r, which gives 42 ms on sp’. Functions for
computing such matters are defined formally in [28].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Distributed database systems may have several different
hw/sw environments. These are taken into account by de-
scribing their storage parameters separately.

Query Description

Assume that the sample database also contains a file on
market information named MARKETS as depicted in Fig-
ure 2. Assume that this file has some 50 million records
for 250000 different products, 80 different countries and
five different years (1980-1984) and that the file has two
indices, one the atiribute PRODUCT# and the other on
COUNTRY. The file description of the MARKETS file,
denoted by M, gives this information. (The file description
M is not given here).

Consider the sample query Q1: “Give the product num-
bers, trademarks, and market shares of after-shave lotions
in TAHITI in 1984.” (Assumption: the product TYPE of
after-shave lotions is 19500). This query is expressed in
SQL [31,32] as follows:

select PRODUCT-NO, TRADEMARK,
MARKET-SHARE

from  PRODUCTS, MARKETS

where PRODUCTS.TYPE = 19500 and

MARKETS.COUNTRY = TAHITI and
MARKETS.YEAR = 1984 and
PRODUCTS.PRODUCT-NO

= MARKETS.PRODUCT#

This query involves two restrictions, one on PROD-
UCTS and one on MARKETS, a join of the restriction re-
sults on PRODUCT-NO = PRODUCT# and finally a
projection on the three requested attributes (Figure 3(a)). It
is assumed in the present article that each single RA opera-
tion can be implemented by as many implementation pro-

MARKETS ( PRODUCT#, COUNTRY, YEAR, MARKET-SHARE )

1512 TAHITI 1984 05
1512 CONGO 1984 0
1512 CONGO 1983 0,i2

95051 TAHIT] 1984 0,02

556556 BURMA 1983 0,75

556556 TAHITI 1984 042

FIG. 2. The sample file MARKETS

ut

prajection (F3,{PRODUCT-NO,
TRADEMARK, MARKET-SHARE})

F3

Join(FLF2,
(PRODUCT-NO,=, PRODUCT*))

rl/ ANLF?

rastrictfon(PRODUCTS, restriction(MARKETS, (COUNTRY,

(TYPE,x,19500)) s, TAHITI)A(YEAR,,1984))
PRODUCTS HARKETS
FIG. 3(a).  The sample query as a tree structure.

cedures as there are access strategy alternatives in its
execution [24,37]. One possible, while not necessarily the
most efficient, implementation strategy for the sample
query involves accessing PRODUCTS via the index on
TYPE and MARKETS by file scan. These are accom-
plished by generalized restriction procedures [23,24,32].
After the restrictions, their results should be sorted
on PRODUCT-NO and PRODUCT#, respectively, to
facilitate their joining by a merge-join procedure
[24,25,30,34,43]. Sorting is done by sort procedures. The
join result is input to a projection procedure which in this
case only needs a single pass through the join result be-
cause the key of the operand (PRODUCT-NO) is preserved
[24,25,34]. The projection can thus be implemented by an
efficient key-preserving projection procedure [24).

Queries are represented as RA expressions. The imple-
mentation strategies, selected by the optimizer, as se-
quences of implementation procedures are represented
analogously as tree-structure expressions consisting of im-
plementation procedure calls [8].

The result of this simple sample query is partially de-
picted in Figure 3(b). Before this result is evaluated, i.e.,
before the query (the procedure sequence) is executed, the
query cost model is utilized. Thereby the database user re-
ceives a description of the result and a cost estimate before
query execution. The user has a chance to judge the result
against its costs before execution.

Cost Estimation Models

The use of the information necessary for query cost
modelling is defined by estimation models for each imple-
mentation procedure. These estimation models estimate the
cardinalities and other characteristics of the results of pro-
cedures, including the processing-based charges. Each
model consists of precisely defined mathematical functions
which construct the components of the result file descrip-
tion on the basis of its operand file description(s), the stor-
age parameters and the characteristics and parameters of
the procedure. The result file description is structuraily
equivalent to the operand file description(s). The structure
of the estimation models is explained in [8,9,15,26].

Basically, the query cost model operates as follows.
When the database user has given his tentative query in the
query language of the DBMS, it is first transformed into
the equivalent RA expression and optimized by the query
optimizer [23-25,34,37], whereafter the corresponding
query cost model expression is constructed. Optimization
is necessary in the first phase because it fixes the access

Q1( PRODUCT-NO, TRADEMARK, MARKET-SHARE )
1512 GILLETTE 05
95051  BLUE STRATOS 002
556556 TABAC 042
FIG. 3(b). A part of the sample query result

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



strategy of the query and therefore also determines query
cost. In the cost model expression, each RA implementa-
tion procedure is represented by its estimation model, its
parameters by the same parameters in the model and its
operand files by their descriptions. Each estimation model
constructs the file description of the procedure’s result.
This is then used in the estimation model of any subse-
quent procedure.

3. Cost Estimation

Costs of Restrictions

The estimation model for generalized restriction proce-
dures consists of five functions for constructing the com-
ponents CARD, AD, FD, OD, and COST of the file
descriptions. The functions for the first three components
have been defined by Jarvelin in [15,44]. They allow com-
plex Boolean predicates in the result cardinality estimation
and also handle multiple conditions on one attribute cor-
rectly (e.g., TYPE = 19000 and TYPE = 20000). Their
results for the sample query Q1 are summarized below.
The construction of the OD and COST components is then
considered in more detail.

The restriction on the PRODUCTS file in the sample
query Q1 gives records with TYPE value equal to 19500.
Assume that the result file has the following new proper-
ties when compared to the operand (their evaluation is pre-
sented in detail in [15]):

* its cardinality is 15

 the attribute TYPE: its selectivity is 1; its range is from
19500 to 19500

+ other attributes: their selectivities are set at 15

o the attribute TYPE becomes functionally dependent on
all the other attributes.

The restriction on the MARKETS file produces records
concerning TAHITI and the year 1984. Assume that the re-
sult has the following new properties when compared to
the operand (see [15] for details):

its cardinality is 125000

the attribute PRODUCT#: its selectivity is 125000
the attribute COUNTRY: its selectivity is 1

the attribute YEAR: its selectivity is 1; its range is
from 1984 to 1984

« the attributes COUNTRY and YEAR become function-
ally dependent on all the other attributes.

Query systems typically pipeline the intermediate results
of queries if possible {24,25,34]. Therefore the regular or-
ganization of the intermediate files is that of pipelines.
Two parameters are sufficient to describe the structure of
pipelines for query cost modelling: the record length,
which is derived on the basis of the attribute field lengths,
and the name of the sort key, if any, of the records. Re-
striction results are always pipelined. No difficulty is in-
volved in constructing the parameters by the function r-od.
In the sample query Q1 the results from the restrictions on

PRODUCTS and MARKETS have record lengths 45 and
41, respectively (the same as in the operands). Neither re-
sult is sorted because the operands are not sorted, either.

Cost estimation functions for restrictions must be ca-
pable of estimating the cost of any access strategy that may
be utilized for the operation. In practice, optimizers decide
between file scan and index utilization on a very rough basis
[23-25,31,32,34,37]. Having the optimizer’s decision, the
cost of the access strategy can be estimated in detail. In the
present approach, the file descriptions and storage para-
meters convey necessary, detailed parameters for cost es-
timation. Jdrvelin has defined formally and generally a
function that estimates the cost of evaluating general
Boolean predicates (excluding negations) in any of six flat
file types (including sorted and indexed files) [28]. This
function is based on standard file design formulae, in
[21,22,33], but extends and generalizes them in an essen-
tial way. Due to its modular structure it can easily be cus-
tomized to the usual query environments. The cost
estimation function for restrictions r-cost is built on this
function [27].

In the sampe query, the PRODUCTS file is accessed
via the index on TYPE to obtain the records on after-shave
lotions. In the file description P, the description of this
index is (TYPE, 2715, 2, 17000). This means that, in order
to retrieve the record identifiers in the accession list for
the TYPE value 19500, the index height (2 levels) must be
traversed. This takes two index block accesses (40 ms
each). The retrieval of the estimated 15 target records iden-
tified by the accession list requires 15 data block accesses
(42 ms each). The total cost of this operation is therefore
2 X 40 + 15 X 42 = 710 ms. A scan of the MARKETS
file takes a much longer time. The file was assumed
to contain 50 million records with record length 41.
Because the data block length is 2048 bytes, this file
requires 1020409 blocks and its scan cost is about 8.16 X
10° ms (8 ms per block). These estimates are derived
automatically.

The estimation model for generalized restriction proce-
dures is a function (called r-description) which constructs
the file descriptions of the restriction results by organizing
the file name A and the results by the functions for the
components CARD, AD, FD, OD, and COST as a six-
tuple [27]. The file name component of the result file de-
scription is denoted by A (for a missing name), because
naming the intermediate or result file descriptions is irrele-
vant from the cost modelling viewpoint.

For example, the file description for the result of the re-
striction on PRODUCTS will be (A, 15, {(PRODUCT-
NO, 7, 15, int, 1000, 9999999), (TRADEMARK, 20, 15,
char, A, A), (TYPE, 5, 1, int, 19500, 19500), (MANUF-
NO, 6, 15, int, 1000, 999999), (QSALES, 7, 15, int, 0,
9999999)}, {{PRODUCT-NO}—{PRODUCT-NO,
TRADEMARK, TYPE, MANUF-NO, QSALES},
{TRADEMARK}—{MANUF-NO}, {PRODUCT-NO} —
{TYPE}, {TRADEMARK} — {TYPE}, {MANUF-
NO} — {TYPE}, {QSALES} — {TYPE}, .. .}, (pipe, (45, \)),
710). Details are given in {8].

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



Costs of Sorting

The following procedures in the sample query are sort
procedures. Sorting affects only the components OD and
COST in the file descriptions. The result of the sort proce-
dure is a sorted pipe file. The cost of sorting must be
added to the COST component of the operand in order to
reflect all the costs associated with the production of the
sort result. Assuming the common z-way-sort-merge
method [34,45], the function by Blasgen and Eswaran [34)
has been modified so as to give the cost in milliseconds
[28]. The costs of the sort procedures in the sample query
are zero milliseconds for the small intermediate file origi-
nating from the PRODUCTS file, and 1.18 X 10° ms for
the large intermediate file originating from the MARKETS
file. The total costs associated with these files are now
71 ms and 9.34 X 10° ms, respectively. The estimation
model for the sort procedures [27] constructs the file de-
scriptions of the sort results. The OD components give the
new sort keys and the COST components the new costs.
Otherwise the result file descriptions remain the same as
the operand file descriptions.

Costs of Joins

The estimation model for merging equi-join procedures
also consists of five functions for constructing the compo-
nents CARD, AD, FD, OD, and COST. The functions for
the CARD, AD, FD-components have been defined in
[15,44]. They take the join attribute ranges and selectivi-
ties, which need not be equal, into account. Their results
for the sample query Q1 are summarized below. The func-
tions for the OD and COST-components are then consid-
ered in more detail.

The join on the two intermediate files in the sample
query Q1 gives records with equal values of PRODUCT-
NO and PRODUCT#. Assume that the result has the fol-
lowing new properties when compared to the operands (see
[15] for details):

its cardinality is 15

the attribute PRODUCT#: its selectivity is 15

the attribute MARKET-SHARE: its selectivity is 15
the attributes PRODUCT-NO and PRODUCT#
become functionally dependent on each other.

Also the results of merging equi-joins are pipelined.
Therefore the function for organization description simply
notifies the file organization type (pipe-file), the record
length and the sort-key. In the sample query Q1 the two
latter are 86 (i.e., the sum of the operand record lengths)
and PRODUCT-NO. The OD component is thus (pipe-
file, (86, PRODUCT-NO)).

The merging equi-join procedure is efficient if the join
attribute selectivities are good: in such a case one pass
through the operand files if sufficient [43]. In the worst
case, i.e., with poor join attribute selectivities, the cost of
the merge-join procedure is considerably higher than the
optimal [29]. Jdrvelin provides a cost function for the pro-
cedure which takes the effect ofithe join attribute selectivi-

ties into account [29]. The COST component in the result
file description for this procedure is always the sum of the
COST components of the operand file descriptions and the
operand merge cost {27].

In the join of the sample query Q1, the join attribute se-
lectivities are good. Because the operands are pipe files,
their merging is performed in the central memory and at no
extra cost. In the sample case, therefore, the COST com-
ponent of the result file description is about 9.34 X
10° ms, i.e., about 2 h 40 min, most of which is due to the
high scan cost of the MARKETS file.

The cost estimation model for the merging equi-join,
the function m-j-description [27], organizes the derived
components CARD, AD, FD, OD, and COST and the file
name A as a six-tuple to produce the result file description.
The formal file description for the sample join is bypassed.

Costs of Projection

The estimation model for key-preserving projection pro-
cedures consists of functions for constructing the compo-
nents CARD, AD, FD, OD, and COST of the result file
description. The functions for the components CARD,
AD, and FD have been defined in [15,44]. They contribute
the use of functional dependencies as a novel means in
cardinality estimation. Their results for the sample query
are summarized first. The remaining functions are then
considered.

The projection on the join result in the sample query Q1
produces records containing values for the requested at-
tributes PRODUCT-NO, TRADEMARK, and MARKET-
SHARE. Assume that the result has the following new
properties: its cardinality is 15, the attribute descriptions
are the same as in the operand, and the attribute
PRODUCT-NO is the key of the result (see [15] for
details).

The projection results are also pipelined whenever pos-
sible. The function for constructing the organization
description for the result recognizes the operand sort order,
if any, and computes the record length as the sum of the
attribute field lengths. In the sample query Q1 the OD
component for the projection result is (pipe-file,
(32, PRODUCT-NQO)).

Cost estimation for key-preserving projection proce-
dures must take into account the file structures the
operands may have. The operand files are always scanned,
possibly utilizing the operand sort order, if any. Jirvelin
has analyzed the scan costs of files with six file structures
and provides a general formula for their estimation [28].
The cost estimation function for projections k-p-cost is
built on this function [27]. It sums the operand file scan
cost and the operand’s COST component.

Although the projection procedure in the sample query
Q1 scans the operand, no costs are incurred because the
operand is pipelined. Therefore the COST component of
the result file description of the sample query obtains the
same value as in the operand file description, i.e. about
9.34 X 10° ms (about 2 h 40 min).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The cost estimation model, the function k-p-description
[27], for the key-preserving projection procedures con-
structs the result file descriptions by organizing the file
name A and the components CARD, AD, FD, OD, and
COST as a six-tuple. The presentation of the formal result
file description is bypassed.

4. Cost Reporting

The Query Cost Report

The user charge estimation methodology, and the tools
based on it, produce as their results formal file descrip-
tions. As such they are quite unreadable for nonexperts.
However, the file descriptions can be interpreted in con-
crete and easily intelligible terms as query cost reports,
which summarize essential features of query results. The
sample report in Figure 4 is based on the cost estimation
result of the sample query Q1. The data in the report are
derived automatically on the basis of the query (expressed
in the SQL), the sample file descriptions P and M and the
storage parameters sp' [8,29]. The coefficient for scaling
the processing-based charge estimate (in ms) into dollars is
imaginary (any economically justifiable coefficient can be
used). The technical details option would report the field
lengths of the records, their functional dependencies and
the file organization description in an analogous way.

Query cost reports provide database users with rich and
understandable descriptions of query results and their
costs. The reports contain essential items of information
for database users, such as the query processing cost, the
number of records retrieved, and the selectivities, ranges
and domains of the retrieved attributes. Users therefore
know how much they have to pay for what information.
On the basis of the attribute descriptions they can judge ra-
tionally, what information might be discarded as unneces-
sary, or what additional information should be requested.

QUERY COST REPORT

The result of your query Q1 has the

Total cost for processing is approx. $ 93.4
The number of records retrieved is approx. 15

The names and properties of the data items in the result records are :

nama approx. seiectivity range domaln

| PRODUCT-NO 15 1000 - 9993999 integer

' TRADEMARK 15 - character
MARKET-SHARE 135 00 - 10 real

The length of each record is 32 characters

The primary key for the result is PRODUCT-NO

The result is ordered by PRODUCT-NO.

The processing cost is approx. 8 337 220 units (& 0.001 ¢), intolal $93.4

Press <control I> for more technical details

FIG. 4. ' The query cost report for the sample query Q1

Moreover, the provision of the reports does not require
extra effort on behalf of the user: all one has to give is the
query expression. Query cost reports should therefore
prove useful in query negotiation.

Use of Query Cost Reports

The position and use of user charge estimation tools and
query cost reports is as in Figure 5. Having an information
need, the user decides whether database use might be
worthwhile or whether he should give up the effort. If
some NDB seems promising, the user must formulate an
appropriate query. For each tentative query formulation,
one receives a query cost report which can be used for
broadening or narrowing the query. If the expected results
turn out to be too expensive and further modification of the
query seems fruitful, the user may choose to do so. If not,
the whole query may be rejected. If the query seems
worthwhile, it can be executed. {9]

Assume, for example, that the user considers the
sample query as too expensive and notices that in fact the
user is interested in products with PRODUCT-NO value
exceeding 5000000 and that the PRODUCT-NO informa-
tion is actually unnecessary; moreover, only products with
MARKET-SHARESs above 10% are of interest. The user
may well expect that by limiting the scope of the query in
such a way might reduce the costs. The modified query
(Q2) is expressed as follows:

select TRADEMARK, MARKET-SHARE
from PRODUCTS, MARKETS
where PRODUCTS.TYPE = 19500 and

PRODUCTS.PRODUCT-NO = 5000000 and
MARKETS.COUNTRY = TAHITI and

giveup reject

e

LEGEND: D1 decision to seck information Q query candidate
UCE  user charge estimation Q&C query candidate and cost
RF query reformulation report

D2 decision to execute the query NDB  the numeric database
EXEC query execution

FIG. 5. User charge estimation tools and query cost reports in the use
of NDBs [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



QUERY COST REPORT
The result of Query Q2 has the

Total cost for processing is approx. $92.2
The number of records retrieved is approx. 8

‘The names and properies of the data items in the result records ara :

name approx. selectivity range domaln
TRADEMARK ] - character
MARKET-SHARE 8 (oA - 10 real

The length of each record is 25 characters

The primary key for the resultis TRADEMARK & MARKET-SHARE

The result is ordered by PRODUCT-NO

The processing cost is approx. 9 219 460 units (& 0.001 ¢), in total $92.2

Press <control I> for technical details

FIG. 6. The query cost report for the sample query Q2

MARKETS.YEAR = 1984 and
MARKETS.MARKET-SHARE = 0.1 and
PRODUCTS.PRODUCT-NO

= MARKETS.PRODUCT#

The query cost report for the modified query is illus-
trated in Figure 6. It indicates that the processing costs
have remained essentially the same. This is due to the opti-
mizer’s decision to scan the MARKETS file, which corre-
sponds to nearly 90% of the query costs and which is here
assumed not to be affected by the modification. The user
might now prefer the former query formulation, which
provides much more information at only slightly increased
cost.

5. Discussion

It has been argued that modern charging bases, al-
though economically justifiable, have the consequence that
database users are unable to estimate their charges, which
may vary over a considerable range. It is therefore neces-
sary to develop tools for user charge estimation. The bene-
fits of processing-based charging in NDBs cannot be
achieved without such means.

An approach for estimating processing-based user
charges, briefly query cost modelling, has been proposed
in this article. A set of requirements to be met by such an
approach was given. The status of the proposed methodo-
logy in the light of these requirements is now considered.

Jérvelin has shown that the proposed approach is suit-
able not only for query cost modelling but also for query
cardinality estimation and item-based charge estimation
[15,26]. The modularity of the approach makes it hos-
pitable to further extensions. For example, by incorporat-
ing communication network descriptions the approach can be
extended to distributed database environments where data
communication costs are also estimated. Therefore the pro-

posed approach covers the user charge estimation on vary-
ing charging bases.

Query cost reports, generated on the basis of the results
provided by the approach, show clearly that the results of
cost estimation can be reported to the user in understand-
able terms. Essential information for user judgement dur-
ing query negotiation is provided. Moreover, thorough
technical descriptions are available upon request. Tools
based on the proposed approach are inherently convenient
in the use because the approach requires, on the part of the
users, only their query formulations in the query language.

The file descriptions are more thorough than their coun-
terparts in previous approaches. They bring together and
present in one framework and in a systematic way essential
parameters for query cost modelling from file design,
query optimization and cardinality estimation studies.
Absence of any component would lead to limitations and/
or growing inaccuracy of the methods. To give some
examples:

* Yao gives, for query optimization purposes, index
names and their selectivities but not index width or
height, nor the value ranges of their base attributes; the
selectivities and ranges of unindexed attributes are not
described at all, nor the FDs [25]. The equivalents of
the AD and FD components are not used by Blasgen &
Eswaran [34] and Hall [37]. Astrahan & Chamberlin
[32], Hall [37], and Smith & Chang [24] give minimal
or no quantitative data on database files. Cardinality
estimation, index access cost estimation etc. are there-
fore inaccurate in such approaches. This can be toler-
ated in query optimization for relatively simple queries
in business databases but leads to very inaccurate cost
estimates.

* Average values for several parameters are often used
in file design, e.g., average record length, the number
of separate attributes and their average selectivity
[39,46]. By neglecting individual attribute selectivities
and ranges correct cardinality estimates cannot be
computed. Detailed formulae for estimating access
times for various file structures are often provided
[21,22,33,35,47]. However, almost all cardinality esti-
mation-related parameter values are premises (givens)
in the formulae and therefore cannot be estimated
within the approaches. As a consequence such ap-
proaches are insufficient for query cost modelling
without the extensions proposed in this article.

* The approaches to cardinality estimation, per se, ne-
glect file organization description. For example, Bemn-
stein et al. [16], Christodoulakis [18,19], Merret &
Otoo {48], Piatetsky-Shapiro & Connell {17] and Yu &
Lin {20], use rough equivalents of CARD, and AD,
but no equivalents of the components FD, OD, or
COST. Query cost analysis on such a basis is not pos-
sible. The present approach provides contributions
even in cardinality estimation [15].

» The FD component is a major extension to the previ-
ous approaches. Thorough representation of FDs is
necessary for reliable estimation of projection cardinal-
ities [15,30,49] and for access strategy selection for
projections [24,25]. However, they have so far been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



used only in a very limited sense. Jarvelin has ana-
lyzed the behavior of complete FD sets in RA opera-
tions [42,50). In this article these results are applied to
query cost modelling.

This richness of description supports the generality,
usability, accuracy, and flexibility of the proposed ap-
proach. Although no large-scale experiment with the ap-
proach has been conducted, the proposed approach
improves the accuracy of cost estimates because (1) it is
based on systematic coordination and application of stan-
dard techniques in three relevant areas in the literature and
(2) several improvements e.g. in cardinality estimation
have been pointed out {15].

The representation of file descriptions as n-tuples sup-
ports precise, formal definition of the whole approach. It
guarantees general treatment of all cost estimation cases
instead of a combination of sample cases. This is not
achieved by table-based representations [16,20] nor by as-
suming implicit information (e.g., that the values of essen-
tial parameters are known [21,22,33,35,47)).

All the functions used in the estimation models have
been defined precisely [15,27-29,44]. This means that
their coding into query cost modelling software is fairly
straightforward and that such software can be incorporated
into database query systems. Query cost modelling tools
certainly consume some of the resources of the DBMSs.
This is most often proportional to the resource consump-
tion of the queries being evaluated. A further issue to be
considered in cost modelling tool development is the user
charge for using the tool. This could be a fixed charge or it
could be based on the tool connect-time. However, a
charge for using the tool is obviously acceptable when
weighed against the uncertainty it removes.

The proposed approach is applicable in the framework
of the relational data model. In this framework it specifies,
exactly and in detail, how the cost estimation tools should
be constructed. For other data models and DBMS archi-
tectures it provides useful and well-founded suggestions
concerning the types of representations and methods re-
quired for query cost modelling and other problems related
to user charge estimation. Although file descriptions and
functions for constructing them must be modified to fit
other data models, the architecture of the approach remains
appropriate.

The present approach is limited to query applications. It
does not support cost estimation for the user of e.g. statis-
tical or econometric models which often are CPU-bound
and may therefore require extensions to the present ap-
proach. The vendor has to cover the database maintenance
cost by the query charges (e.g., as an overhead in the coef-
ficient transforming the query cost into monetary terms).

The results provided by the proposed approach are nec-
essary prerequisites for the viability of processing-based
charging methods. Without information on query output,
the users cannot compare the query costs and utility. In
many cases this would hinder database use. Those libraries
and information services which charge their customers for
the services may encounter difficulties in ‘selling’ search

services to customers if the costs cannot be predicted.
Moreover tight budgets do not foster risk-taking. [12]

In addition to query formulation, the results provided
by the approach are useful in vendor or database selection
if, as is often the case, the requested data are available at
several sources. Some vendors may not like the possibility
that users may find some queries too expensive in ad-
vance, and, as a consequence, may not want to execute
them. In such situations, the vendor would lose income.
On the other hand, much more income will be lost, and
many dissatisfied users will turn up if the user cannot have
an advance estimate of the query costs.

6. Conclusions

Recent studies on charging for online information re-
trieval emphasize the importance of charging users for the
information they actually retrieve from the database, and
their retrieval cost, and not for their connect-time to the
online hosts. The foreseeable developments in the micro-
computer, mass storage, and data communication technolo-
gies will lead to a new generation of online information
systems where item- and processing-based charging is the
standard [S!]. In this article it has been argued that such
charging methods are viable in NDBs only if users have
the possibility of estimating the query costs in advance.
This is due to the characteristics of modern DBMSs, the
variability of queries and their results, and the necessarily
nontechnical view the users have of the database. There-
fore it is necessary to develop query cost estimation tools
to be included in the query interfaces of public online
NDBs. Without them query negotiaiton has no firm and
rational basis.

A general approach to query cost modelling in NDBs is
proposed here. The approach is based on (1) extending
standard techniques used in query cardinality estimation,
file design, and query optimization in the context of the
RDM, (2) using file descriptions to describe and convey
the characteristics of the operand, intermediate and result
files of queries, and (3) developing estimation models for
the implementation procedures of RA operations. The pro-
posed approach contains all components, functions and
relationships among them which are necessary for develop-
ing automatic query cost estimation tools. It provides the
possibility of specifying these tools generally, exactly, and
systematically. A number of requirements to be met by
query cost modelling tools are put forward. The proposed
approach seems to meet these requirements well. It is ob-
viously straightforward to incorporate even more user
charging items in the approach, e.g., the estimation of
telecommunication costs. Tools providing such estimates
are required in the user interfaces if user charging is based
on such items. They can be used for the benefit of the
database user, supplier, and vendor.

References

1. Directory of Online Databases. Santa Monica, CA: Cuadra Associ-
ates; 1984,

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



Online Numeric Databases,” Business Information Reivew. 1(1):
Directory of Online Databases 8(1). New York, NY: Cuadra/
Elsevier; 1987.

EUSIDIC Database Guide 1983. Learned Information, Oxford;
1983.

Chen, C.-C. Hemon, P., Eds. Numeric Databases. Norwood, NI:
Ablex; 1984.

Foster, A, “Business Information from Databanks: The Potential of
38-45; 1984.

Heim, K. M., Ed. “Data Libraries for the Social Sciences.” Library
Trends Special Issue. 30(3); 1982.

Rumble, J.R., Jr.; Hampel, V.E., Eds. Database Management in
Science and Technology: A CODATA Sourcebook on the Use of
Computers in Data Activities. Amsterdam: North-Holland; 1984.
Jarvelin, K. “User Charge Estimation in Numeric Online Databases:
A Methodology.” PhD. Thesis, Tampere, Finland: University of
Tampere, Acta Universitatis Tamperensis, Ser. A, Vol. 212, 1986.
Jirvelin, K. “A Methodology for User Charge Estimation in Nu-
meric Online Databases,” Journal of Information Science. Part I:
14(1): 3-16; Part II: 14(2): 77-92.

Aitchison, T. M. “Online and the Database Producer,” Journal of
Information Science. 9(2): 75-80; 1984.

Dunn, R.G.; Boyle, H.F. “Online Searching: An Analysis of Mar-
keting Issues,” Information Services & Use. 4. 147-154; 1984,
Hull, D. “Marketing and Pricing of Full-text End-user Services,”
Information Services & Use. 4: 167-170; 1984.

Hunter, J. A. “What Price Information,” Information Services &
Use. 4:217-223; 1984,

“International Comparative Price Guide to Databases,” Online Re-
view. 9(1): 77-84; 1984.

Jarvelin, K. “Cardinality Estimation in Numeric On-line Data-
bases,” Information Processing and Management. 22(6): 523-548.
Bemstein, P.; Wong, E.; Reeve, C.; Rothnie, J. “Query Processing
in a System for Distributed Databases (SDD-1)," ACM TODS. 6(4):
602-625; 1981.

Piatetsky-Shapiro, G.; Connell, C. “Accurate Estimation of the
Number of Tuples Satisfying a Condition.” In: Proceedings of the
ACM SIGMOD Conference, Boston, MA, June 18-21, 1984: 256—
276.

Christodoulakis, S. “Estimating Record Selectivities,” Information
Systems. 8(2): 105-115; 1983.

Christodoulakis, S. “Estimating Block Transfers and Join Sizes,”
ACM SIGMOD Record. 13(4): 40-54; 1983.

Yu, C.T.; Lin, Y.C. “Some Estimation Problems in Distributed
Query Processing,” In: Proceedings of the IEEE Distributed Com-
puting Systems Conference, 1982: 13-19.

Teorey, T.J. Fry, J.R. Design of Database Structures. Englewood
Cliffs, NJ: Prentice-Hall; 1982.

Wiederhold, G. Database Design. New York, NY: McGraw-Hill;
1977.

Selinger, P. G. Astrahan, M. M., Chamberlin, D.D., Lorie, R. A.,
and Price, T.G., "Access path selection in 2 relational database
management system.” In: Bernstein, PA. ed. Proceedings of the
ACM SIGMOD Conference, Boston, MA, May 30-June 1, 1979:
23-34.

Smith, J. M.; Chang, P. “Optimizing the Performance of a Rela-
tional Algebra Database Interface,” Communications of the ACM.
18(10): 568-579; 1975.

Yao, S.B. “Optimization of Query Evaluation Algorithms,” ACM
TODS. 4(2): 133-155; 1979.

Jarvelin, K. “A Straightforward Method for Advance Estimation of
User Charges for Information in Numeric Databases,” Journal of
Documentation. 42(2): 65-83; 1986.

Jarvelin, K. “An Approach to Query Cost Modelling in Numeric
Datab " (Tamp Finland: University of Tampere, Dept. of
Library and Information Science, Rep. 22, 1986).

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

45,

46.

47.

48,

49.

50.

51.

Jérvelin, K. “A systematic approach to modelling the costs of flat
files.” (Thesis for the degree of Licentiate in Philosophy. Tampere,
Finland: University of Tampere, Dept. of Mathematical Sciences,
Rep. Al52, 1985).

Jarvelin, K. “A Systematic Approach to Query Cost Modelling,” In:
Kangassalo, H. ed. Information Modelling and Data Base Manage-
ment. Lecture Notes in Computer Science. Berlin: Springer-Verlag,
1988 (in press).

Ullman, J.D. Principles of Database Systems. London: Pitman;
1980.

Astrahan, M. M. et al. “System R: Relational Approach to Database
Management,” ACM TODS. 1(2): 97-137; 1976.

Astrahan, M. M.; Chamberlin, D. D. “Implementation of a Struc-
tured English Query 1 ge,” C ications of the ACM.
18(10): 580-588; 1975.

Hanson, O. Design of Computer Data Files. London: Pitman; 1982.
Blasgen, M. W.; Eswaran, K.P. “Storage and access in relational
data bases,” IBM Systems Journal. 16(4): 363-377; 1977.

Chan, A.Y. “Index Selection in a Self-Adaptive Relational Data
Base Management System.” Cambridge, MA: MIT, Lab. for Com-
puter Science, Report MIT/LCS/TR-166; 1976.

Schkolnick, M.; Tiberio, P. “Considerations in Developing a De-
sign Tool for a Relational DBMS” in: Proc. IEEE Computer Soci-
ety's 3rd International Computer Software & Applications
Conference, Chicago, Ill., Nov. 6-8, 1979: 228-235.

Hall, P. “Optimization of a Single Relational Expression in a Rela-
tional Data Base System,” IBM Journal of Research and Develop-
ment. 20(3): 244-257; 1976.

Gelenbe, E. and Gardy, D. “On the Size of Projections: 1.” Infor-
mation Processing Letters, 14(1): 18-21; 1982. :

Yao, S. B.; Merten, A.G. “Selection of File Organization Using an
Analytic Model” In: Proceedings of the First VLDB Conference,
Sept. 1975, pp. 255-267.

Ausiello, G.; Batini, C.; Moscarini, M. “On the Equivalence
Among Data Base Schemata” In: Proceedings of the International
Conference on Data Bases, Aberdeen, Scotland, 2—-4 July, 1980.
London: Heyden, 1980: 34—46.

Niemi, T. “A Seven-tuple Representation for Hierarchical Data
Structures,” Information Systems. 8(3): 152-157; 1983.

Niemi, T.; Jirvelin, K. “A Straightforward Formalization of the Re-
lational Model,” Information Systems. 10(1): 65-76; 1985.

Merret, T.H. “Why Sort-Merge Gives the Best Implementation of
the Natural Join,” ACM SIGMOD Record. 13(2): 39-51; 1983.
Jirvelin, K. “Cardinalities and Attribute Descriptions of Result Re-
lations of Relational Algebra Operations.” 2nd ed. Tampere, Fin-
land: University of Tampere, Dept. of Mathematical Sciences,
Report A134, 1985.

Knuth, D.E. The Art of Computer Programming, Vol. 3, Sorting
and Searching. Reading, MA; Addison-Wesley; 1973.

Yao, S.B. “An Attribute Based Model for Database Access Cost
Analysis,” ACM TODS. 2(1): 45-67; 1977.

Schkolnick, M. “Optimizing Partial Inversions for Files,” SanJose,
CA: IBM Research Labatory, Rep. RJ 1477 (#22576), 1974.
Merret, T. H.; Otoo, E. “Distribution Models of Relations” In: Pro-
ceedings of the 5th International Conference on Very Large Data
Bases, Rio de Janeiro, Brazil, 1979: 418-425.

Gardy, D. and Puech, C. “On the Size of Projections: A Generating
Function Approach,” Information Systems. 9(3/4): 231-235; 1984.
Jarvelin, K. “Finding functional dependencies for intermediate rela-
tions of relational algebra expressions.” In: Kangassalo, H. ed. Pro-
ceedings of the First Scandinavian Research Seminar on
Information Modeling and Data Base Management. Acta Universi-
tatis Tamperensis ser. B 17. Tampere, Finland: University of Tam-
pere, 1982: 407-441.

Fox, C. “Future Generation Information Systems,” Journal of the
American Society for Information Science. 37(4): 215-219; 1986.

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.



